『入試問題を解くための発想力を伸ばす 解法のエウレカ 数学 I · A』 に関する誤植のお詫び・訂正のお知らせ

この度は『入試問題を解くための発想力を伸ばす 解法のエウレカ 数学 $I \cdot A$ 』(2023 年 8 月 22 日第 1 刷発 行)をご購入いただきまして、誠にありがとうございます。

大変申し訳ございませんが、本冊の以下のページに誤表記がございました。ここに訂正させていただきますと ともに、深くお詫び申し上げます。

	誤	正	修正刷
p.11 解答(2) 3~4 行目	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 4 & & 3 & \longrightarrow 9 \\ 3 & & -1 & \longrightarrow -4 \end{vmatrix}$	5 刷 で 修正予定
p.12 解答 1~2 行目	$x+y = (\sqrt{5} - \sqrt{3}) + (\sqrt{5} - \sqrt{3}) = 2\sqrt{5}$ $xy = (\sqrt{5} - \sqrt{3})(\sqrt{5} - \sqrt{3}) = 5 - 3 = 2$	$x+y = (\sqrt{5} - \sqrt{3}) + (\sqrt{5} + \sqrt{3}) = 2\sqrt{5}$ $xy = (\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3}) = 5 - 3 = 2$	4 刷で 修正済み
p.19 解答(3) 5 行目	$x \ge \frac{1}{2}$ と合わせて、	$x \ge -\frac{1}{2}$ と合わせて、	2 刷で 修正済み
p.23 解答(2) 下から 2 行目	以上より $a^{2}b-ab^{2}-a^{2}+b^{2}+2ab-1$ $=(a^{2}-ab+1)(b^{2}+ab-1)$ もしくは…	以上より $a^{3}b-ab^{3}-a^{2}+b^{2}+2ab-1$ $=(a^{2}-ab+1)(b^{2}+ab-1)$ もしくは…	3刷 で 修正済み
p.25 別解(1)(ii) 1 行目	$\sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}}$	$\sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}} \dots $	5 刷で 修正予定
p.100 別解 1 7 行目	よって、BC= $\frac{\sqrt{7}}{3}$ 、BD= $\frac{2\sqrt{7}}{3}$	よって、BC= $\frac{2\sqrt{7}}{3}$ 、BD= $\frac{\sqrt{7}}{3}$	5 刷 で 修正予定
p.101 例題	…とする。地面 <mark>で互い</mark> に 200 m 離れた…	…とする。地面 上 に 200 m 離れた…	5 刷 で 修正予定
p.116 HOW 3行目	$\cos A = \frac{b^2 + c^2 + a^2}{2bc}$	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$	5 刷 で 修正予定
p.183 ひらめき(3) 3行目	PIECE 712 が有効です。	(削除)	5 刷で 修正予定
p.183 PIECE	706 余事象の確率 707 独立試行の確率 712 最小値の確率	706 余事象の確率 707 独立試行の確率 (削除)	4刷で
p.207 解答 3 行目	$\frac{1}{x} + \frac{1}{y} = 2 \text{ LD},$	$\frac{1}{x} + \frac{1}{y} = \frac{1}{2} \text{ dD},$	5 刷 で 修正予定
p.213 解答 下から 4 行目	$m' < n'$, $m' \ge n'$ は互いに素より,	m' < n' であり, m' , n' は互いに素より,	5刷で 修正予定