『入試問題を解くための発想力を伸ばす 解法のエウレカ 数学 II・B + ベクトル』 に関する誤植のお詫び・訂正のお知らせ

この度は『入試問題を解くための発想力を伸ばす 解法のエウレカ 数学 $II \cdot B + ベクトル$ 』(2024 年 10 月 1 日 第 1 刷発行)をご購入いただきまして、誠にありがとうございます。

大変申し訳ございませんが、本冊の以下のページに誤表記がございました。ここに訂正させていただきますと ともに、深くお詫び申し上げます。

	誤	正	修正刷
p.10 解答(2)	$(x-3y)^6$ の展開式における x^3y^3 の係数は,異なる 16 個の…	$(x-3y)^6$ の展開式における x^3y^3 の係数は異なる 6 個の \cdots	2刷 で 修正済み
p.96 解答(2) 答		よって, $0 < \theta < \frac{\pi}{12}, \frac{\pi}{4} < \theta < \frac{13}{12}\pi, \frac{5}{4}\pi < \theta < 2\pi$	2刷 で 修正済み
p.106 例題(2) 冒頭	$\theta \le \theta < 2\pi$ のとき、…	0 ≤θ<2πのとき、…	3刷 で 修正済み
p.130 参考(3)	$81^{1.25} = 81^{\frac{5}{4}}$ $= 4\sqrt{81}$ $= 4\sqrt{(3^4)^5}$ $= 4\sqrt{(3^5)^4}$	$81^{1.25} = 81^{\frac{5}{4}}$ $= \sqrt[4]{81^5}$ $= \sqrt[4]{(3^4)^5}$ $= \sqrt[4]{(3^5)^4}$	4 刷で 修正予定
p.132 解答(1) 3 行目	$\left \frac{1}{2} < \frac{3}{2} < \frac{3}{4} \right $	$\left \frac{1}{2} < \frac{2}{3} < \frac{3}{4} \right $	4 刷 で 修正予定
p.138 解答(2) 4 行目	$= \left(\log_2 3 + \frac{2\log_2 3}{2}\right) \left(\frac{2}{\log_2 3} + \frac{1}{2\log_2 3^2}\right)$	$= \left(\log_2 3 + \frac{2\log_2 3}{2}\right) \left(\frac{2}{\log_2 3} + \frac{1}{2\log_2 3}\right)$	4刷で 修正予定
p.145 解答(2) 答	よって、 $X = \frac{1}{2} \text{ のとき}, \ \text{最小値 } \frac{1}{4}$ $X = -2 \text{ のとき}, \ \text{最大値 } 7$	よって、 $X = \frac{1}{2}$ のとき、最小値 $\frac{3}{4}$ $X = -2$ のとき、最大値 7	3 刷 で 修正済み
p.151 解答(2) 3 行目	$t=a^x$ とおくと、 $t=0$ であり、	$t=a^x$ とおくと、 $t>0$ であり、	3 刷 で 修正済み
p.162 ひらめき(2) 1 行目	例えば, 2137 は…	例えば, 2317 は…	4 刷で 修正予定
p.169 解答(1) 答	$x \le -1$, $1 \le x$ で増加, $-2 \le x \le 1$ で減少する。	$x \le -2$, $1 \le x$ で増加, $-2 \le x \le 1$ で減少する。	3 刷 で 修正済み
p.181 解答(2) 下から 2~3 行目	$= \left[-\frac{1}{3}x^3 + x^2 - 3x \right]_{-3}^{1}$ $= -\frac{1}{3} \{1^3 - (-3)^3\} + \{1^2 - (-3)^2\} - 3\{1 - (-3)\}$	$= \left[-\frac{1}{3}x^3 - x^2 + 3x \right]_{-3}^{1}$ $= -\frac{1}{3} \{1^3 - (-3)^3\} - \{1^2 - (-3)^2\} + 3\{1 - (-3)\}$	4 刷で 修正予定

	誤	正	修正刷
p.186 WHY 1 行目	$\int_{\beta}^{\alpha} (x-\alpha)(x-\beta) dx = -\frac{1}{6} (\alpha - \beta)^{3}$	$\int_{\beta}^{\alpha} (x-\alpha)(x-\beta) dx = -\frac{1}{6} (\beta - \alpha)^{3}$	4 刷で 修正予定
p.187 PIECE520	$\int_{\alpha}^{\beta} (x-\alpha)(x-\beta) dx = \frac{1}{6} (\beta-\alpha)^{3}$	$\int_{\alpha}^{\beta} (x-\alpha)(x-\beta) dx = -\frac{1}{6} (\beta - \alpha)^3$	4 刷で 修正予定
p.195 PIECE520	$\int_{\alpha}^{\beta} (x-\alpha)(x-\beta) dx = \frac{1}{6} (\beta-\alpha)^3$	$\int_{\alpha}^{\beta} (x-\alpha)(x-\beta) dx = -\frac{1}{6} (\beta - \alpha)^3$	3 刷で 修正済み
p.207 解答(2) 答	$S_n = \frac{\frac{1}{4} \{1 - (-2)^n\}}{1 - (-2)} = \frac{1 - (-2)^{n-1}}{12}$	$S_n = \frac{\frac{1}{4} \{1 - (-2)^n\}}{1 - (-2)} = \frac{1 - (-2)^n}{12}$	2刷 で 修正済み
p.208 CHECK 3 行目	b-a=c-b (=(公差 1))	b-a=c-b (=(公差 d))	4 刷で 修正予定
p.208 CHECK 10 行目	$\frac{b}{a} = \frac{c}{b} \ (=(\triangle \boxtimes 1))$	$\frac{b}{a} = \frac{c}{b} \ (= (\triangle \bowtie \mathbf{r}))$	4 刷で 修正予定
p.210 例題(1)	$(i) \sum_{k=1}^{n} 5 \cdot 3^{n-1}$	$(i) \sum_{k=1}^{n} 5 \cdot 3^{k-1}$	4 刷で 修正予定
p.210 別解(1)	(1) $\sum_{k=1}^{n} 5 \cdot 3^{k-1}$ は、初項 5、公比 3、末項 $5 \cdot 3^n$ の等比数列の和であるから、 $\sum_{k=1}^{n} 5 \cdot 3^{k-1} = \frac{5 - 5 \cdot 3^n \times 3}{1 - 3}$	(1) $\sum_{k=1}^{n} 5 \cdot 3^{k-1}$ は、初項 5、公比 3、末項 $5 \cdot 3^{n-1}$ の等比数列の和であるから、 $\sum_{k=1}^{n} 5 \cdot 3^{k-1} = \frac{5 - 5 \cdot 3^{n-1} \times 3}{1 - 3}$	4 刷で 修正予定
p.211 解答 右段 2 行目	$a_n = a_1 + \sum_{k=1}^{n-1} b_n$	$a_n = a_1 + \sum_{k=1}^{n-1} b_k$	4 刷で 修正予定
p.216 解答(2) 下から 2 行目	$=\frac{1}{6}(n+1)\{-n(n+1)+3n^2+6\}$	$= \frac{1}{6}(n+1)\{-n(2n+1)+3n^2+6\}$	4 刷で 修正予定
p.220 解答 11 行目	$a_n + 3n - 1 = 4 \cdot 2^{n-1}$	$a_n+3n-1=3\cdot 2^{n-1}$	2刷 で 修正済み
p.222 解答 下から 2 行目	$\begin{vmatrix} a_{n+1} = a_n \times \frac{1}{3} + (1 - a_n) \times \frac{2}{3} \\ = -\frac{1}{3} a_n + \frac{2}{3} \end{vmatrix}$	$\begin{vmatrix} a_{n+1} = a_n \times \frac{2}{3} + (1 - a_n) \times \frac{1}{3} \\ = \frac{1}{3} a_n + \frac{1}{3} \end{vmatrix}$	4刷で 修正予定
p.271 問題(2)	$\overrightarrow{AQ} = \frac{4}{7}\overrightarrow{AB} + \frac{3}{7}\overrightarrow{AG}$	$\overrightarrow{AQ} = \frac{4}{7}\overrightarrow{AB} + \frac{3}{7}\overrightarrow{AC}$	4 刷で 修正予定
p.279 解答(2) 5 行目	$ \overrightarrow{\mathbf{AB}} = \sqrt{1^2 + 2^2 + (-2)^2}$	$ \overrightarrow{BC} = \sqrt{1^2 + 2^2 + (-2)^2}$	4 刷で 修正予定
p.295 解答(1) 10 行目	$\overrightarrow{\mathbf{BQ}} = \frac{3}{5}\overrightarrow{\mathbf{BQ}}$	$\overrightarrow{\mathbf{BP}} = \frac{3}{5}\overrightarrow{\mathbf{BQ}}$	4刷で 修正予定

	誤	正	修正刷
p.303 解答(2) 10~11 行目	また、 $O \ge P$ の中心 M を通る直線と円①との交点を O に近いほうから順に P_1 , P_2 とすると、 $ \overrightarrow{OP} $ の最大値は OP_2 であり、最小値は OP_2 である。	また、 O と P の中心 M を通る直線と円①との交点を O に近いほうから順に P_1 , P_2 とすると、 $ \overrightarrow{OP} $ の最大値は OP_2 であり、最小値は OP_1 である。	4 刷で 修正予定
p.312 ひらめき(1) 5 行目	$\overrightarrow{\mathbf{OP}} = \overrightarrow{\mathbf{OB}} + \overrightarrow{\mathbf{BQ}}$	$\overrightarrow{\mathbf{OQ}} = \overrightarrow{\mathrm{OB}} + \overrightarrow{\mathrm{BQ}}$	4 刷で 修正予定
p.322 別解 1~2 行目	$\sigma(100X - 120) = \sqrt{r(100X - 120)}$ = 7500	$\sigma(100X - 120) = \sqrt{V(100X - 120)}$ $= \sqrt{7500}$	4刷で 修正予定
p.361 解答(2) 6 行目	である	である $\overline{\mathbf{L}}$ 規分布に従う。 $n=960$ と十分に大きいので	4刷で 修正予定