『大学入試 参考書と問題集がセットで学びやすい ニコイチ化学』 に関する誤植のお詫び・訂正のお知らせ

この度は『大学入試 参考書と問題集がセットで学びやすい ニコイチ化学』(2024年7月9日第1刷発行)をご購入いただきまして、誠にありがとうございます。

大変申し訳ございませんが、本冊の以下のページに誤表記がございました。ここに訂正させていただきますとともに、深くお詫び申し上げます。

講義編	誤	正	修正刷
p.35 下部例の原子量	0 = 14	0 = 16	2刷 で 修正済み
p.36 POINT015 内	(相対質量)×(原子量)の和で求め られる。	(相対質量)×(存在比)の和で求められる。	3刷 で 修正予定
p.39 POINT017内	質量モル濃度 $[mol/kg]$ $= \frac{溶質の物質量[mol]}{溶媒の質量[kg]} \times 100$	質量モル濃度[mol/kg] = 溶質の物質量[mol] 溶媒の質量[kg]	2刷 で 修正済み
p.61 過酸化水素の 半反応式	Step1 $H_2O_2 \rightarrow H_2O$ Step2 $H_2O_2 \rightarrow 2H_2O$ Step3 $H_2O_2 + 2H^+ \rightarrow 2H_2O$ Step4 $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	Step1 $H_2O_2 \rightarrow O_2$ Step2 $H_2O_2 \rightarrow O_2 + 2H^+$ Step3 $H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$ ※Step4は削除	2刷 で 修正済み
p.67 図中	Na ₂ S ₂ O ₃ 水溶液 (酸化剤) I ₂ 水溶液+デンプン (還元剤) 水溶液	Na ₂ S ₂ O ₃ 水溶液 (還元剤) I ₂ 水溶液+デンプン (酸化剤) 水溶液	3刷 で 修正予定
p.119 8~10 行目		$ 2 \times \frac{3}{2} \cdots $ $ 3 \times \frac{1}{2} \cdots $ $ +) - 4 \cdots $	2刷 で 修正済み

p.123 解答 問3	$-rac{\mathit{CM}(m+W)(b-d)}{1000W}$ (NaOH 1molあたりの発熱量は、 $rac{\mathit{CM}(m+W)(b-d)}{W} imes 10^{-3}\mathrm{kJ/mol}$ である。また、	$-\frac{CM(m+W)(b-d)}{1000m}$ $(NaOH\ 1mol あたりの発熱量は、\frac{CM(m+W)(b-d)}{m} imes 10^{-3} ext{ kJ/mol}である。また、$	3刷 で 修正予定
p.130	$Pb + PbO_2 + H_2SO_4$	$Pb + PbO_2 + 2H_2SO_4$	3刷で
POINT060 内	$\longrightarrow 2 \text{PbSO}_4 + 2 \text{H}_2 \text{O}$	$\longrightarrow 2\text{PbSO}_4 + 2\text{H}_2\text{O}$	修正予定
p.149 6 行目	$K = \frac{[\text{CH}_3\text{COO}^-] [\text{H}_3\text{O}^+]}{[\text{CH}_3\text{COH}] [\text{H}_2\text{O}]}$	$K = \frac{[\text{CH}_3\text{COO}^-] [\text{H}_3\text{O}^+]}{[\text{CH}_3\text{COO}^-\text{H}] [\text{H}_2\text{O}]}$	3刷 で 修正予定
p.163 下から 2 行目	アンモニア NH ₃ に <mark>塩化水素 HCl</mark> を 近づけると,固体の塩化アンモニ ウム NH ₄ Cl が生成し,	アンモニア NH ₃ に <mark>濃塩酸</mark> を近づけ ると, <mark>塩化水素 HCl と反応し</mark> ,固 体の塩化アンモニウム NH ₄ Cl が生 成し,	2刷で修正済み
p.168 先生のセリフ	KBr と Cl₂ は反応しないんだね。	KCl と Br₂ は反応しないんだね。	3刷 で 修正予定
p.180 解答 問1	オー濃塩酸	オー塩化水素	2刷 で 修正済み
p.203 下から 1 行目	スズが腐食されやすい	鉄 が腐食されやすい	3 刷 で 修正予定
p.241 例題 2 行目	油脂A 11.0g に0°C, 1.013×10 ⁵ Paで 1.40 Lである。	油脂 A 11.0 g に <mark>付加する水素は</mark> 0℃, 1.013×10 ⁵ Pa で 1.40 L である。	2刷 で 修正済み
p.248 一番下	p-キシレン フタル酸	CH ₃ KMnO ₄ COOH COOH O-キシレン フタル酸	2刷 で 修正済み
p.285 Point 123 ナイロン 66 の 合成	O H 	H H I I I I I I I I I	2刷 で 修正済み
p.285 Point 123 ナイロン 66 の 合成	$ \begin{array}{cccc} O & H & H \\ \parallel & \mid & \parallel \\ \cdots - C - N - (CH_2)_6 - N - \cdots \end{array} \right]_n $ $ + \langle \square \rangle 66 $	$ \begin{array}{cccc} 0 & H & H \\ \parallel & \parallel & \parallel \\ \cdots - C - N - (CH_2)_6 - N - \cdots \end{array} \right]_n $ $ {\cancel{T}} \checkmark \square \nearrow 66 $	2刷 で 修正済み

演習編	誤	正	修正刷
p.16 練習問題 5 (3)	18.0 mol/L濃硫酸を用いて5.00%希 硫酸を500gつくるには A が何mL必 要か。	18.0 mol/L濃硫酸を用いて5.00%希 硫酸を500gつくるには <mark>濃硫酸</mark> が何 mL必要か。	2刷 で 修正済み
p.46 (2)下から3行目	$P_{\rm He} = 5.0 \times 10 \; { m L}$	$P_{\rm He} = 5.0 \times 10 \ { m Pa}$	3刷 で 修正予定
p.50 (B)の一番下	x = 32.1 = 32 g	y = 32.1 = 32 g	3刷 で 修正予定
p.55 練習問題 20 解説(3)	混合気体中の酸素の分圧は、 $0.30 \over 0.30 + 0.10 \times 1.0 \times 10^5$ $= 0.75 \times 1.0 \times 10^5$ Pa 酸素の分圧は 1.0×10^5 Pa の正力であるため、酸素の溶解量も 0.75 倍となる。水 700 mLに溶けている酸素は、 0° C、 1.013×10^5 Paで、 $49 \times 0.75 \times \frac{700}{1000} = 25.7 ≒ 26$ mL	混合気体中の酸素の分圧は、 $0.30 \over 0.30 + 0.10 \times 2.0 \times 10^5$ $= 1.5 \times 1.0 \times 10^5$ Pa 酸素の分圧は 1.0×10^5 Pa の表示の分圧は 1.0×10^5 Pa の表示のであるため、酸素の溶解量も 1.5 倍となる。水 700 mLに溶けている酸素は、 0° C、 1.013×10^5 Paで、 $49 \times 1.5 \times \frac{700}{1000} = 51.45 \leftrightarrows 51$ mL	3刷 で 修正予定
p.57 練習問題 21 問題 1~2 行目	(原子量:H=1.0, C=12, O=16, Cl=35.5, Ca=40,)	(原子量:H=1.0, N=14 , C=12, 0=16, Cl=35.5, Ca=40,)	2刷 で 修正済み
p.75 解答	グラフより、発生した熱量がすべて 温度上昇に使われたとすると、溶液 は31℃になるため、水酸化ナトリウ ムの溶解による温度上昇は、 31-20=11℃=11 Kとなる。また、 混合後の水溶液の質量は240+10= 250gである。発生した熱量は、 250g×4.2 J/(g・K)×(31-20)K =11550 J=11.55 kJ	グラフより、発生した熱量がすべて 温度上昇に使われたとすると、溶液 は30 ℃になる(時間0分のときの値 を読み取る)ため、水酸化ナトリウ ムの溶解による温度上昇は、 30-20=10 ℃=10 Kとなる。また、 混合後の水溶液の質量は240+10= 250 g である。発生した熱量は、 250 g×4.2 J/(g·K)×(30-20)K =10500 J=10.50 kJ	2刷 で 修正済み

p.76 1~7 行目	NaOH 1molあたりの熱量は、 $\frac{11.55 \text{kJ}}{10 \text{ mol}} = 46.2 = 46 \text{kJ/mol}$ この反応は発熱反応であるため、固体の水酸化ナトリウムの溶解エンタルピーは、 -46 kJ/mol なお、溶解エンタルピーを ΔH (kJ/mol) として化学反応式とともに表すと次のようになる。 NaOH(固) + aq $\Delta H = -46 \text{ kJ}$	NaOH 1molあたりの熱量は、 $\frac{10.5 \text{kJ}}{10} = 42.0 = 42 \text{kJ/mol}$ $\frac{10}{40} \text{mol}$ = $42.0 = 42 \text{kJ/mol}$ この反応は発熱反応であるため、固体の水酸化ナトリウムの溶解エンタルピーは、 -42kJ/mol なお、溶解エンタルピーを ΔH 〔kJ/mol〕として化学反応式とともに表すと次のようになる。 NaOH(固) + aq $\Delta H = -42 \text{kJ}$	2刷 で 修正済み
p.82 8 行目	陰極で発生した <mark>塩素H</mark> zは,	陰極で発生した 水素H 2は,	3刷 で 修正予定